
International Journal of Scientific & Engineering Research, Volume 4, Issue 12, December-2013 1941
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

An Interactive System for Arabic Software
Requirements Elicitation

Hanan Elazhary

Abstract— Eliciting user requirements is one of the most critical stages in requirements engineering. Due to human factors, this is an
error-prone task that affects later stages. This calls for developing automated tools to help in the elicitation process. Most research studies
focus on developing automated tools for eliciting English software requirements. The problem of eliciting requirements in other languages
has been greatly overlooked in the literature. This is particularly a critical problem since translating elicited requirements to English
introduces additional imprecision. Thus, this paper proposes an interactive Arabic software Requirements Elicitation Assistance System
(AREAS) in an attempt to tackle this problem. The system would be of a great help to billion of stakeholders in the middle east.

Index Terms— Arabic, interactive system, natural language, requirements elicitation, software engineering, software requirements
engineering, user requirements.

—————————— ——————————

1 INTRODUCTION
HE goal of software requirements engineering is speci-

fying the services and constraints of software systems. To
achieve this goal, it involves two main tasks: software re-

quirements elicitation and specification [1], [2]. Software re-
quirements are elicited from stakeholders resulting in natural-
language user requirements statements describing high-level
goals of software systems [3]. This is one of the most critical
stages in software engineering since imprecision in the elicited
user requirements causes errors in later stages. Such impreci-
sion is at least an order of magnitude more expensive to cor-
rect when undetected until late software engineering stages
[4]. Thus, focusing on improving the precision of the elicited
user requirements in the first stage is one of the ambitious
aims of software requirements engineering [5]. This impreci-
sion is typically due to the lack of accuracy and/or complete-
ness in the elicited user requirements, and most importantly
due to the ambiguity of the natural languages used to express
these requirements [6]. This problem becomes worse when
users speak languages other than English. This is because they
express their user requirements in their own languages, while
programmers typically expect English requirements to be easi-
ly coded using English-like programming languages. Transla-
tion of user requirements to English introduces further ambi-
guities. In spite of the criticality of this problem, it has been
overlooked in the literature. Thus, one of the main concerns of
this paper is to tackle the problem of eliciting Arabic user re-
quirements as a prototype. This should be greatly beneficial to
billions of stakeholders in the middle east.

Analyzing natural language user requirements is mainly a
manual task carried out by the software requirements engi-
neers [7], [8]. Since user requirements usually occupy hun-
dreds of pages that need weeks or even months to be exam-

ined, manual analysis takes a very long time and the probabil-
ity of human error is very high. Consequently, using automat-
ed tools for this task would be of a great help.

Some systems have been developed to automatically detect
potential imprecision in already written natural language user
requirements documents through indicators such as weak
verbs [9], [10], [11]. But, these systems don’t assist in correct-
ing any imprecision. Another approach in the literature at-
tempts to avoid the introduction of imprecision while the user
requirements are being written by imposing the use of natural
language patterns. Most research studies in the literature have
focused on developing such natural language patterns for spe-
cific domains such as database systems [12], scenarios [13],
[14], and embedded systems [6].

Jain et al. [15] developed the general-purpose RAT system
that imposes the use of specific natural language patterns that
help users adhere to best practices in writing software re-
quirements in different situations [7], [8], [9]. Elazhary [16]
proposed a similar general-purpose system for Arabic soft-
ware requirements elicitation. But, unfortunately, it is some-
times very hard for nontechnical stakeholders to stick to the
suitable pattern in each situation. Besides, for the sake of con-
sistency, these systems require predefining all the used terms
in a glossary, which is cumbersome. The REAS system [17] is a
semi-automated system that has been proposed for integrating
these two approaches intelligently to exploit their advantages
and avoid their disadvantages while eliciting software re-
quirements. This is achieved by imposing the use of a good
writing style to avoid the introduction of many types of im-
precision and by interactively emulating a conversation be-
tween the requirements engineer and the user to help correct
introduced imprecision. Besides, it builds a glossary of terms
incrementally to help ensure consistency in the used terminol-
ogy. Finally, explanations produced by the REAS system can
be easily inspected by the requirements engineer to correct
any missed imprecision.

This paper proposes an Arabic version of the REAS system,
namely the Arabic software Requirements Elicitation Assis-
tance System (AREAS) for eliciting Arabic software require-
ments. It should be noted however that Arabic is a Semitic

T

————————————————
• Hanan Elazhary is an associate professor at the Faculty of Computing and

Information Technology, King Abdulaziz Univerity, Jeddah, KSA. She is
also affiliated with the Electronics Research Institute, Cairo, Egypt. E-mail:
hananelazhary@hotmail.com; helazhary@kau.edu.sa

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 12, December-2013 1942
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

language which differs from Indo-European languages includ-
ing English with respect to morphology (form of words), syn-
tax (grammar) and semantics (meaning). This makes the task
of processing Arabic statements challanging. Besides one-to-
one translation of the REAS system to the AREAS system is
impossible except in the block diagram and the modules. In
other words, the AREAS system has a different set of rules
and attempt to enforce a different writing style. It should be
noted that the proposed version of the AREAS system is con-
cerned with disambiguating the role of subjects, verbs, and
objects in the input statements rather than parsing the state-
ments. So, input statements are requested to be shortened iter-
atively if needed. This will be avoided in future improved ver-
sions of AREAS where more complicated statements are al-
lowed and processed.

The paper is organized as follows: Section 2 describes the
operation of the AREAS system. Section 3 provides the results
and discussion. Finally, Section 4 provides the conclusions and
directions for future research.

2 THE AREAS SYSTEM
The purpose of the AREAS system is to help avoid the intro-
duction of many types of imprecision while the software re-
quirements are being written and help correct others after the
software requirements are written. This is achieved by helping
users adhere to some of the best practices in writing Arabic
software requirements rather than imposing the use of specific
natural language patterns. It enforces a set of rules that are
easy enough to be followed by non-technical users. By emulat-
ing a conversation between the requirements engineer and the
user, the AREAS system interactively detects and helps correct
many causes of imprecision quickly and easily. Besides, it
builds a glossary of used terms incrementally to help ensure
consistency in the used terminology. Finally, the AREAS sys-
tems produces explanations that can be easily inspected by the
software engineer for detecting and correcting missed impre-
cision. The current version of the AREAS system is mainly
concerned with disambiguating the role of different terms as
subjects, objects, or verbs. The block diagram of the AREAS
system is shown in Figure 1. It is composed of four main
modules: the spelling checker, the rule imposer, the lexical
analyzer, and the parser. These modules are described in de-
tails in the following sub-sections. It should be noted that
while the user inputs a given statement, he is prompted to use

terms from the glossary (if any) to help maintain consistency
in the used terminology.

2.1 The Spelling Checker
As the name implies, the purpose of the spelling checker is to
spell-check the words in the input statement by referring to a
lexicon. If a word in not in the lexicon, the user is prompted to
correct it or add it to the lexicon. In future versions of the AR-
EAS system, the spelling checker will be extended to be able to
produce a list of suggestions for the user to select from. The
spell-checked statement then enters the rule imposer.

2.2 The Rule Imposer
The rule imposer enforces a set of simple rules to help users
adhere to the required writing style while writing the software
requirements. This style is intended to help preserve the clari-
ty of the input statements and reduce ambiguity.
Rule 1. Write short statements.

This rule increases the probability of having a simple
statement that can be quickly and easily processed. Generally,
a short statement should include no more than 25 words. In
case the rule is violated, the user is prompted to shorten the
statement or decompose it into two or more shorter state-
ments.
Rule 2. Write statements of the form: subject-verb-object or verb-

subject-object only.
Unlike English, in Arabic, statements are read from the

right to the left. The Arabic language has a relatively free
word order [18]. There are generally four different forms of a
given declarative statement:

1. subject-verb-object; example: أحمد أكل السمكة or Ahmed ate
the fish

2. object-verb-subject; example: السمكة أكلها أحمد or The fish
ate it Ahmed

3. verb-subject-object; example: أكل أحمد السمكة or Ate Ahmed
the fish

4. verb-object-subject; example: أكل السمكة أحمد or Ate the
fish Ahmed

The two forms object-verb-subject and verb-object-subject
are confusing in English and also in Arabic and so Rule 2 for-
bids using them. The form object-verb-subject can be detected
through the accompanying pronoun (such as ها or it in the
corresponding example above). The form verb-object-subject
cannot be easily detected especially if both the subject and
object are of the same gender such as in case of the statement
 or Ate the fish Mona. In this statement, it is not أكلت السمكة منى
clear whether Mona ate the fish or whether the fish ate Mona.
If a violation of this rule is detected, the user is prompted to
rewrite the input statement.
Rule 3. Two consecutive nouns are interpreted as a noun (subject or

object) and a corresponding modifier.
Though the current version of the AREAS system is con-

cerned with disambiguating the role of different terms as sub-
jects, objects, or verbs, modifiers are inevitable and so have to
be considered.
Rule 4. Write only active statements.

Fig. 1. Block diagram of the AREAS system. IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 12, December-2013 1943
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

In Arabic, a passive statement can typically take one of the
following two forms:

1. verb-object; example: أكلت السمكة or was eaten the fish
2. object-verb; example: السمكة أكلت or The fish was eaten
 Rule 4 imposes writing active statements only since in case

of passive statements, it is not clear who or what is doing the
action. Violation of this rule can be detected when an object is
missing in the verb-object form (assuming verb-subject-object)
or in the object-verb form (assuming subject-verb-object). If a
violation of this rule is detected, the user is prompted to re-
write the input statement.
Rule 5. Write only declarative statements.

Other possible types of statements in the Arabic language
include:

1. imperative (command or request); example: كل السمكة or
eat the fish

2. interrogative (question); example: السمكة؟ل أك or Did he
eat the fish?

3. exclamatory (surprise or strong feelings); example: كل أ
!السمكة or He ate the fish!

These statements are not allowed since they are unneces-
sary in software requirements documents and would compli-
cate the operation of the system. Violations of this rule can be
easily detected when an assumed object or subject is missing.
Some keywords also aid in detecting many of these statements
such as the keyword هل in the statement هل أكل السمكة or Did he
eat the fish? or the keyword ما in !ما أجمل السمكة or What a beautiful
fish! If any of these statements is detected, the user is prompt-
ed to remove it.
Rule 6. Do not use pronouns.

There are many forms of declarative statements in Arabic
using pronouns [19]. These include:

1. personal pronouns; example: هو أكل السمكة or He ate the
fish

2. relative pronouns; example: السمكة التي أكلها أحمد or The fish
which Ahmed ate

3. demonstrative pronouns; example: هذا أكل السمكة or This
ate the fish

This rule tries to avoid referential ambiguity [7], [8] and the
implicitly problem [9] since it is not clear what these words
refer to. Whenever a pronoun is detected, the user is prompted
to replace it.

Generally, if any of the above rules is violated and the vio-
lation is detected by the rule imposer, it prompts the user to
modify it, remove it, or keep it for subsequent inspection by
the requirements engineer. A modified statement reenters the
spelling checker and the rule imposer for inspection. This con-
tinues until both modules detect no further problems.

The statement then enters the lexical analyzer. The lexical
analyzer and the parser try to emulate a conversation between
the requirements engineer and the user in an attempt to detect
and help correct many causes of imprecision in each inspected
input statement. The lexical analyzer also helps in building a
glossary of used terms incrementally in order to help maintain
consistency in the used terminology.

2.3 The Lexical Analyzer
The goal of the lexical analyzer is to consult a lexicon to gener-

ate a set of classified tokens such as nouns, verbs, modifiers,
etc. The problem is that there exist many sources of ambiguity
in the Arabic language [19]:

1. category ambiguity where a given word has several in-
terpretations; example: the word كتب can mean the
noun books or the verb wrote

2. homographs or words with two or more meanings; ex-
ample: the word صبر can mean patience or cactus plant

3. syntactic ambiguity when there are several interpreta-
tions for the syntax of a given statement; example:
 can mean Ahmed saw a man wearing رأى أحمد رجل بنظارة
eye glasses or Ahmed saw a man using eye glasses

In an attempt to address some of the causes of such ambi-
guities, the following rules apply:
Rule 7. A word at the start of a given statement suffering from cate-

gory ambiguity is a verb if followed by a noun

Rule 8. A word at the start of a given statement suffering from cate-
gory ambiguity is a noun if followed by a verb
In fact, Rule 2 dictates Rules 7 and 8. This is because state-

ments are allowed to take the forms subject-verb-object or
verb-subject-object only.
Rule 9. In case of a homograph, suggestions are provided to the user

for selection

Rule 10. Each item is given a code and added to the glossary unless
already exists.
The purpose of Rule 10 is to build a glossary of terms in-

crementally to help ensure consistency in the used terminolo-
gy. Giving one code to two different items or different codes
to the same item signals inconsistency in the used terminology
and so possible ambiguity.

The statement and the classified tokens generated by the
lexical analyzer are passed to the parser for specifying the role
of each item (subject, object, etc). It also produces explanations
that can be later inspected by the requirements engineer to
detect missed ambiguities.

2.4 The Parser
The goal of the parser is to specify the role of each item in the
input statement as subject, object, verb, or modifier. In case of
a syntactic ambiguity, the parser provides the user with a list
of possiblities to make a selection. The following rules apply:
Rule 11. A verb at the start of a given statement is followed by a

subject then an object

Rule 12. A noun at the start of a given statement is followed by a
verb then an object
In fact, Rule 2 dictates Rules 11 and 12. This is because

statements are allowed to take the forms subject-verb-object or
verb-subject-object only.
Rule 13. Two consecutive nouns are a noun and a corresponding

modifier
In case of consulting the user, the user selections are pro-

duced as explanations that can be easily inspected by the
software engineer for detecting and correcting any missed
imprecision.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 12, December-2013 1944
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

It should be noted that in case the user selects items from
the glossary, verbs are allowed to play the role of objects as
shown in the example in Section 3.

3 RESULTS AND DISCUSSION
The AREAS system was tested against a user-description of
some simple programs. An example of these programs ia as
follows:

 البرناميج يطلب من المستخدم إدخال عشر أرقام. هو يجمع الأرقام ويخرج المجموع

In English, these Arabic statements can be expressed as fol-

lows (with an error in the word program):

The progiram prompts the user to input 10 numbers. It adds the
numbers and produces the sum.

These two statements enter the system subsequently. When

the statement يطلب من المستخدم إدخال عشر أرقام البرناميج enters the
sytem, since the glossary is initially empty, the user is not
prompted to select items from it. The spelling checker detects
an error in the spelling of the first word البرناميج so the user is
prompted to correct it. The rule imposer counts the number of
words forming the statement and recognizes no violation of
Rule 1. However, it detects violation of Rule 2. The statement
does not take the form subject-verb-object or verb-subject-
object. The user is prompted to rewrite it. It is rewritten as
follows:

 البرنامج يطالب المستخدم. البرنامج يطلب إدخال عشر أرقام.

In English, this Arabic statement can be expressed as fol-

lows:

The program prompts the user. The program requests inputting 10
numbers.

When the statement البرنامج يطالب المستخدم enters the sytem,
the spelling checker does not detect any problems. The rule
imposer detects no problems. The statement enters the lexical
analyzer. It classifies the word البرنامج as a noun with code 001,
the word يطالب as a verb with code 002, and the word تخدمالمس as
a noun with code 003. The statement and the classified tokens
are passed to the parser for specifying the role of each item. It
classifies the word البرنامج with code 001 as a subject, the word
 with code المستخدم with code 002 as a verb, and the word يطالب
003 as an object.

When the statement البرنامج يطلب إدخال عشر أرقام enters the
sytem, the spelling checker does not detect any problems. The
rule imposer detects a violation of Rule 2. The statement does
not take the form subject-verb-object or verb-subject-object.
The user is prompted to rewrite it. It is rewritten as follows:

 البرنامج يطلب إدخال. المستخدم يدخل عشر أرقام.

In English, this Arabic statement can be expressed as fol-
lows:

The program requests inputting. The user inputs 10 numbers.

When the statement البرنامج يطلب إدخال enters the sytem, the

user is prompted to use items from the glossary so the state-
ment is input in the form of 001 يطلب إدخال or 001 requests input-
ting. The spelling checker and the rule imposer do not detect
any error. The lexical analyzer classifies the word يطلب as a
verb with code 004 and the word إدخال as a noun with code
005. The statement and the classified tokens are passed to the
parser. It classifies the word البرنامج with code 001 as a subject,
the word يطلب with code 004 as a verb, and the word إدخال with
code 005 as an object.

When the statement المستخدم يدخل عشر أرقام enters the sytem,
the user is prompted to use items from the glossary so the
statament is input in the form of شر أرقامع 005 003 or 003 005 ten
numbers. The spelling checker and the rule imposer do not
detect any error. The lexical analyzer detects two consecutive
nouns so consults the user to specify the modifier. According-
ly, it classifies the word عشر as an identifier with code 006 and
the word أرقام as a noun with code 007. The statement and the
classified tokens are passed to the parser. It classifies the word
 with code أرقام with code 006 as an identifier to the word عشر
007, which is in turn classified as an object.

When the statement enters the هو يجمع الأرقام ويخرج المجموع
sytem, the user is prompted to use items from the glossary.
Suppose that the user does not select any glossary item. The
statement enters the spelling checker, which does not detect
any error. The rule imposer detects a pronoun so the user is
prompted to rewrite the statement. It is rewritten as follows:

 يجمع الأرقام ويخرج المجموعالبرنامج

In English, this Arabic statement can be expressed as fol-

lows:

The program adds the numbers and produces the sum.

Again, the user is prompted to use items from the glossary.
The statement using glossary term 001 enters the system in the
form of 001 جمع الأرقام ويخرج المجموعي or 001 adds the numbers
and produces the sum. The spelling checker does not detect any
error. The rule imposer detects a violation to Rule 2 so the user
is prompted to rewrite the statement. It is rewritten as follows:

 يخرج المجموع 001. الأرقام يجمع 001

In English, this Arabic statement can be expressed as fol-

lows:

001 adds the numbers. 001 produces the sum.

When the statement 001 الأرقاميجمع enters the system, the

user is prompted to use items from the glossary and so the
statement enters the system in the form of 001 007يجمع or 001
adds 007. The spelling checker and the rule imposer do not
detect violation of any type. The lexical analyzer classifies the
word جمعي as a verb with code 008. With respect to the parser,
001 acts as a subject and 007 acts as an object.

When the statement 001 يخرج المجموع enters the system, the
spelling checker and the rule imposer do not detect violation

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 12, December-2013 1945
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

of any type. The lexical analyzer classifies the word يخرج as a
verb with code 009 and the word المجموع as a noun with code
010. Finally, the parser classifies the word يخرج with code 009
as averb and the word المجموع with code 010 as an object.

Accordingly, the following explanations are output by the
system to be inspected by the requirements engineer:

 003 المستخدم 002 يطالب 001 البرنامج .1
 005إدخال 004يطلب 001البرنامج .2
 007 أرقام 006عشر 005يدخل 003المستخدم .3
 007الأرقام 008ع يجم 001البرنامج .4
 010 المجموع 009يخرج 001 البرنامج .5

In English, these explanations can be interpreted as follows:
1. The program 001 asks 002 the user 003
2. The program 001 requests 004 inputting 005
3. The user 003 inputs 005 ten 006 numbers 007
4. The program 001 adds 008 the numbers 007
5. The program 001 produces 009 the sum 010

Further inspection by the requirements engineer reveals
that the verb 002 and 004 should take the same code.

4 CONCLUSION
This paper presented the proposed interactive Arabic software
Requirements Elicitation Assistance System (AREAS) that is a
compromise between detection and correction of imprecision
while and after the natural language software requirements
are written. The system is designed for Arabic software re-
quirements to help reduce the ambiguity of the Arabic lan-
guage statements and the further imprecision introduced due
to the translation of these statements to English. This is espe-
cially important in the middle east where stakeholders typical-
ly speak Arabic while software engineers expect English user
requirements statements.

It should be noted that the system is not intended as a
translator, so not all forms of senetences are allowed. Alterna-
tively, the system is intended to help reduce introduced ambi-
guities in requirements documents by inforcing a set of rules
and building a glossary of terms to help maintain consistency
in the used terminology. It emulates a conversation between
the requirements engineer and the user to resolve and reduce
several ambiguities. It produces explanations that can be easi-
ly inspected by the requirements engineer to detect any
missed ambiguity.

It sould be noted also that this is the first version of the
AREAS system that is designed to deal mainly with disam-
bigating the role of verbs, subjects, and objects in a given
statement. The system is being modified to deal with more
complicated sources of ambiguity. Results will be reported in
subsequent papers.

REFERENCES
[1] I. Sommerville, Software Engineering. Addison Wesley, 9th edition, 2010.
[2] K. Wiegers and J. Beatty, Software Requirements. Microsoft Press, 3rd

edition, 2013.
[3] A. Lamsweerde, R. Darimont, and E. Letier, "Managing Conflicts in Goal-

Driven Requirements Engineering," IEEE Trans. Software Engineering, vol. 24,
no. 11, pp. 908-926, 1998.

[4] S. Schach, Object-Oriented and Classical Software Engineering. McGraw-
Hill, 8th edition, 2010.

[5] C. Rupp, "Requirements and Psychology," IEEE Software, vol. 19, no. 3,
pp. 16-18, 2002.

[6] C. Denger, D. Berry, and E. Kamsties, "Higher Quality Requirements Specifi-
cations through Natural Language Patterns," Proc. IEEE Conf. Software: Science,
Technology and Engineering, 2003.

[7] E. Kamsties and B. Paech, "Taming Ambiguity in Natural Language Re-
quirements," Proc. the 13th Int. Conf. Software & Systems Engineering and Their
Applications, 2000.

[8] E. Kamsties, D. Berry, and B. Paech, "Detecting Ambiguities in Requirements
Documents Using Inspections," Proc. the 1st Workshop on Inspection in Software
Engineering, 2001.

[9] G. Lami, "QuARS: A Tool for Analyzing Requirements," Technical Report
CMU/SEI-2005-TR-014, Carnegie Mellon Software Engineering Institute, PA,
USA, 2005.

[10] I. Hussain, O. Ormandjieva, and L. Kosseim, "Automatic Quality Assessment
of SRS Text by Means of a Decision-Tree-Based Text Classifier," Proc. the 7th
Int. Conference on Quality Software, 2007.

[11] B. Lal and C. Chavan, "An Optimization Approach to Analysis of Requirement
Pre-Processing in Software Engineering," Int. Journal of Advanced Research in
Computer Science and Software Engineering, vol. 3, no. 2, pp. 311-316, 2013.

[12] A. Ohnishi, "Software Requirements Specification Database Based on Re-
quirements Frame Model," Proc. the 2nd International Conference on Require-
ments Engineering, 1996.

[13] Y. Wang, L. Zhao, X. Wang, X. Yang, and S. Supakkul, "PLANT a Pattern
Language for Transforming Scenarios into Requirements Models," Int. J. Hu-
man-Computer Studies, vol. 71, pp. 1026-1043, 2013.

[14] C. Ben Achour, "Guiding Scenario Authoring," Proc. the 8th European-Japanese
Conference on Information Modeling and Knowledge Bases, 1998.

[15] P. Jain, K. Vema, A. Kass, and R. Vasquez, "Automated Review of Natural
Language Requirements Documents: Generating Useful Warnings with Us-
er-extensible Glossaries Driving a Simple State Machine," Proc. the 2nd India
Software Engineering Conference, 2009.

[16] H. Elazhary, "Translation of Software Requirements," International Journal of
Scientific and Engineering Research, vol. 2, no. 5, 2011.

[17] H. Elazhary, "REAS: An Interactive Semi-Automated System for Software
Requirements Elicitation Assistance," International Journal of Engineering Science
and Technology, vol. 2, no. 5, pp. 957-961, 2010.

[18] A. Ramsay and H. Mansour, "Local Constraints on Arabic Word Order," Proc.
the 5th International Conference on NLP, pp. 447–457, 2006.

[19] Y. Salem, "A Generic Framework for Arabic to English Machine Translation
of Simplex Sentences Using the Role and Reference Grammar Linguistic
Model," M.Sc. thesis, ITB, 2009.

IJSER

http://www.ijser.org/
http://www.amazon.com/s/ref=ntt_athr_dp_sr_1?_encoding=UTF8&field-author=Karl%20E%20Wiegers&search-alias=books&sort=relevancerank
http://www.amazon.com/Joy-Beatty/e/B008CQ9PB4/ref=ntt_athr_dp_pel_2

	1 Introduction
	2 The AREAS System
	2.1 The Spelling Checker
	2.2 The Rule Imposer
	2.3 The Lexical Analyzer
	2.4 The Parser

	3 Results and Discussion
	4 Conclusion
	References

